Antimicrobials & Chemotherapy

Dr. Carmen E. Rexach
Mt San Antonio College
Microbiology 1
History of chemotherapy

- **Paul Ehrlich**
 - Coined term chemotherapy
 - Looking for “magic bullet”
 - Won Nobel Prize in Physiology or Medicine, 1908

- **Alexander Fleming**
 - *Penicillium notatum* and *S. aureus*
 - Substances from one microorganism inhibits another
 - Won Nobel Prize in Physiology or Medicine, 1945
Sources of antimicrobial drugs

- **Streptomyces spp**
 - Majority of antibiotics
 - Actinomycetes, a group of filamentous bacteria
 - Ex: amphotericin B, chloramphenicol, e-mycin, neomycin
 - Platensimycin
 - *Streptomyces platensis*
Sources of antimicrobial drugs

- **Bacillus**
 - Ex: Bacitracin (*B. subtilis*), polymixin

- **Penicillium, Cephalosporium**
 - Fungi
 - Ex: Penicillin, griseofulvin, cephalothin

- **Note:** most have some type of sporulation process
Spectrum of antimicrobial activity

- Prokaryotic vs. eukaryotic
 - Targets are:
 - Unique to microorganisms
 - More important in the microbes than in the humans

- Viral infections

- Spectrum of microbial activity

- Broad spectrum antibiotics
 - Advantages
 - Disadvantages
 - Competitive inhibition
 - superinfection
Action of antimicrobial drugs

- Bactericidal vs. bacteriostatic
- Five major modes
 - Inhibition of cell wall synthesis
 - Inhibition of protein synthesis
 - Inhibition of nucleic acid synthesis
 - Inhibition of synthesis of essential metabolites
 - Plasma membrane damage
Modes of action

MAJOR TARGETS OF COMMON ANTIMITROBIAL AGENTS

DNA
- Fluoroquinolones
- Novobiocin
- Nitroimidazoles
- Nitrofurans

CELL WALL
- Beta lactam antibiotics
- Glycopeptides
- Bacitracin

RIBOSOMES
- Tetracyclines
- Aminoglycosides
- Lincosamides
- Macrolides
- Streptogramins
- Chloramphenicol
Major categories of antibiotics

- Inhibitors of cell wall synthesis
 - Beta-lactam compounds
 - Penicillin
 - Cephalosporins
 - Monobactams
 - Carbapenems
 - Other cell wall inhibitors
 - Vancomycin
Beta-lactam compounds

Note the characteristic **beta-lactam ring** which is essential for antibiotic activity. Beta-lactamases cleave the beta lactam ring from the rest of the structure, inactivating antibiotic.
Beta-lactam compounds

• Penicillin
 ◦ Source: *Penicillium chrysogenum*
 ◦ Types
 • Penicillin G
 • Antistaphylococcal penicillins (eg. Nafcillin)
 • Extended-spectrum penicillins (eg. Ampicillin)
 ◦ Activity
 • Active against gram positive organisms, gram-negative cocci, non-β-lactamase producing anaerobes
 • not effective against gram-negative rods
 ◦ Mechanism of action (bactericidal)
 • Interferes with bacterial cell wall synthesis by binding to active site on penicillin-binding protein and preventing cross-linking of peptidoglycans
Beta-lactam compounds

- **Resistance**
 - Inactivation by beta-lactamase
 - 300 identified
 - Modification of the penicillin binding proteins
 - Methicillin resistance in staphylococci
 - Penicillin resistance in pneumococci and enterococci
 - Impaired penetration of drug
 - Gram-negative organisms only
 - Presence of efflux pumps
Beta-lactam compounds

- **Cephalosporins**
 - Similar to penicillins in structure, mechanism of action, and activity
 - 1\(^{st}\) Generation
 - Cephalexin, cefazolin, etc.
 - 2\(^{nd}\) Generation
 - Cefuroxime, cefoxitin, cefaclor, etc.
 - Effective against beta-lactamase producing *H. influenza*
 - 3\(^{rd}\) Generation
 - Ceftazidime, cefotaxime, ceftriaxone, etc.
 - Expanded activity against gram-negative organisms
 - Able to cross blood-brain barrier
 - 4\(^{th}\) Generation
 - Cefepime, etc.
 - More resistant to beta-lactamases
 - Good activity against penicillin resistant streptococci and enterobacter infections.
Beta-lactam compounds

- **Monobactams**
 - **Aztreonam**
 - Resistant to most beta-lactamases
 - Active against gram-negative rods
 - No activity against gram-positives or anaerobes

- **Carbapenems** (e.g., imipenem)
 - Wide spectrum, good activity against gram-negative rods, gram positive organisms, *Ps. aeruginosa*, and anaerobes
 - Resistant to most beta-lactamases
 - Good penetration

- **Beta-lactamase inhibitors**
 - Clavulanic Acid, sulbactam, tazobactam
 - Available in fixed combination with certain penicillins (prevent degradation, but have little or no antibacterial properties)
 - Often used in immunocompromised/immunosuppressed patients and in mixed aerobic/anaerobic infections
Other cell wall inhibitors

- **Vancomycin**
 - **Source:** *Streptococcus orientalis* (actinomycete)
 - **Mechanism of action**
 - Binds to the D-Ala-D-Ala terminus of peptidoglycan pentapeptide preventing elongation and cross-linking.
 - **Activity**
 - Bactericidal for gram-positive organisms
 - Can be used in combination with gentamicin and streptomycin to treat *E. faecium* and *E. faecalis* infections
 - Drug of “last resort”
Major categories of antibiotics

- Inhibitors of protein synthesis
 - Antibiotics that bind to 30S ribosomal subunit
 - Aminoglycosides
 - Streptomycin, gentamicin, amikacin, etc.
 - Tetracyclines
 - Spectinomycin
 - Antibiotics that bind to 50S ribosomal subunit
 - Chloramphenicol, lincomycin, clindamycin
 - Oxazolidinones
 - Linezolid
 - Macrolides
 - Erythromycin
 - Antibiotics that prevent elongation of protein
 - Fusidic acid
Inhibitors of protein synthesis

- Chloramphenicol binds to 50S r-RNA and inhibits formation of peptide bond.
- Erythromycin binds to 50S r-RNA and prevents movement along m-RNA.
- Streptomycin changes shape of 30S r-RNA and causes m-RNA to be read incorrectly.
- Tetracycline interferes with the t-RNA anticodon reading of m-RNA codon.
Aminoglycosides

- Source: *Streptomyces* spp.
- Oldest example = **Streptomycin**
- Mechanisms of action
 - Irreversible inhibitor of protein synthesis
 - Binds to 30S ribosomal subunit
 - Interferes with initiation complex of peptide formation
 - Cause mRNA to be misread, producing toxic or nonfunctional protein
 - Breaks up polysomes into nonfunctional monosomes
- Activity
 - Gram-negative enteric bacteria, especially in bacteremia and sepsis
 - Tuberculosis treatment, and with vancomycin or penicillin for endocarditis
- Resistance
 - Transferase enzyme produced by microbe inactivates aminoglycoside
 - Altered transport protein (mutation) that prevents entry
 - Inability to bind to 30S ribosomal subunit due to altered ribosomal structure (mutation)
Tetracyclines

- **Mechanism of action**
 - Binds reversibly to 30S ribosomal subunit
 - Prevents binding of tRNA to mRNA complex
 - Amino acids addition is blocked

- **Activity**
 - Broad spectrum
 - Active against gram-positive and gram-negative, including rickettsiae, chlamydiae, anaerobes, mycoplasma, and some protozoa

- **Resistance**
 - Efflux pumps
 - Tetracycline blocked from binding to ribosome
 - Enzymatic inactivation of tetracyclines

Caution: Can affect bone growth, cause discoloration of teeth. Not for use in pregnancy or children < 8 yo. Also induces photosensitivity.
Chloramphenicol

• Mechanism of action
 ◦ Binds reversibly to 50S subunit of ribosome

• Activity
 ◦ Bacteriostatic, broad-spectrum antibiotic
 ◦ Active against aerobic, anaerobic gram-positive & gram-negative, and rickettsiae
 ◦ Not effective against chlamydia

• Resistance
 ◦ Plasmid-mediated production of chloramphenical acetyltransferase
Oxazolidinones

- New class of synthetic antimicrobial
 - Linezolid
 - Mechanism of Action
 - Prevents formation of ribosomal complex needed for protein synthesis
 - Binds to 50S ribosomal subunit by unique binding site
 - Activity
 - Gram positive organisms, including anaerobic cocci, corynebacteria, and *L. monocytogenes*
 - Bacteriostatic, except streptococci (bacteriocidal)
 - Issues
 - Save this to treat MDR gram positive bacteria
Macrolides

- **Erythromycin**
 - Source: *Streptomyces erythreus*
 - Clarithromycin and azithromycin are semisynthetic derivatives

- **Mechanism of Action**
 - Binds to 50S ribosomal subunit blocking formation of initiation complexes

- **Activity**
 - Gram-positive organisms, especially pneumococci, streptococci, staphylococci, corynebacteria, mycoplasma, legionella, and some mycobacteria
 - Inhibitory or bactericidal depending on organism
 - Works best at alkaline pH

- **Resistance**
 - Usually plasmid mediated
 - Three mechanisms
 - Efflux pumps
 - Hydrolysis by esterases produced by Enterobacteriaceae
 - Methylase production and alteration of ribosomal binding site
Major categories of antibiotics

- Inhibitors of nucleic acid synthesis and function
 - Inhibitors of RNA synthesis and function
 - Rifampin
 - Rifamycin
 - rifampicin
 - Inhibitors of DNA synthesis and function
 - Quinolones & Fluoroquinolones
Inhibitors of RNA synthesis

Rifampin

- **Source**
 - Semisynthetic
 - derivative of rifamycin, produced by *Streptococcus mediterranei*

- **Activity**
 - Gram-positive & gram-negative cocci, enteric bacteria, mycobacteria, chlamydia
 - Use of rifampin as single drug selects for resistance

- **Method of Action**
 - Binds to β subunit of bacterial DNA-dependent RNA polymerase
 - Inhibits RNA synthesis

- **Clinical uses**
 - 600 mg/d orally with INH, ethambutol, or other anti-TB drug
Inhibitor of DNA synthesis

- **Fluoroquinolones**
 - Prototype: Ciprofloxacin
 - **Source**
 - Synthetic
 - Fluorinated analogs of nalidixic acid
 - **Activity**
 - Gram-negative aerobic bacteria
 - Newer agents some efficacy against gram positive
 - Gatifloxocin & moxifloxacin effective against *S. pneumoniae*
 - **Mechanism of action**
 - Inhibit DNA synthesis
 - Inhibit bacterial topoisomerase II (DNA gyrase) and topoisomerase IV
Major categories of antibiotics

- Inhibition of essential metabolites
 - Sulfonamides
 - Trimethoprim
 - Methotrexate
Sulfonamides

- **Structure**
 - Organic sulfur compounds
 - Structural analogs of PABA (p-aminobenzoic acid)
 - Bacteriostatic
 - Ex) Sulfamethoxazole

- **Mechanism of Action**
 - Interfere with conversion of PABA to DHF (dihydrofolate), required by bacteria for production of purines and nucleic acid synthesis

- **Activity**
 - Gram-positive and gram-negative bacteria
 - Nocardia, chlamydia, some protozoa
 - Usually always used with another drug—ie, TMP-SMX
 - Enhances growth of rickettsiae !!

- **Three classes**
 - Oral, absorbable
 - Oral, nonabsorbable
 - Topical
Trimethoprim & TMP-SMX

- **Mechanism of Action**
 - Inhibits bacterial dihydrofolic acid reductase
 - With SMX, sequential blocking of metabolic pathway

- **Activity**
 - TMP-SMX trade name = bactrim
 - Bactericidal
 - *P. jevoreci* pneumonia, shigellosis, systemic salmonella infections, UTI’s, prostatis
 - Active against many respiratory pathogens, CAP

- **Resistance**
 - Plasmid mediated and quickly evolving
Plasma membrane damage

- **Examples:**
 - Polymyxin B
 - Effective against gram-negative, including pseudomonads
 - Bactericidal, topical use only

- **Action:**
 - Act like cationic detergents
 - Alter membrane permeability causing loss of important metabolites
 - Bind and inactivate endotoxins
Antifungal drugs

- Problems:
 - Eukaryotic cells
 - Increase in fungal infections due to immunocompromise and immunosuppression

- Drug categories
 - Systemic antifungal drugs for systemic infections
 - Oral drugs for mucocutaneous infections
 - Topical drugs for mucocutaneous infections
Systemic antifungal drugs

- **Amphotericin B**
 - **Source:** *Streptomyces nodosus*
 - **General characteristics**
 - Amphipathic polyene macrolide
 - Polyene = many double bonds
 - Macrolide = contains lactone ring of 12 or more atoms
 - New formulations include liposomal versions (AmBisome)
 - **Mechanism of action**
 - Binds to ergosterol, a sterol found only in fungal cell membranes
 - Forms pores in membrane which increases cell permeability
 - **Activity**
 - Broadest spectrum of antifungal agents
 - Yeasts (*C. albicans, Cryptococcus neoformans*)
 - *H. capsulatum, C. immitis, B. dermatitidis*
Amphotericin B

Toxicity

- **Infusion related toxicity**
 - Immediate and include nausea, vomiting, headache, fever, muscle spasms, hypotension

- **Slower toxicity**
 - Renal damage
 - Can be serious enough to warrant dialysis with prolonged use

- **Liposomal amphotericin B (AmBisome)**
 - Toxicity associated with nonspecific binding to mammalian cholesterol
 - Packaged in lipid so that lipid vehicle becomes reservoir, releasing amphotericin more slowly allowing more specific binding and less toxicity
Systemic antifungal drugs

- **Azoles**
 - Synthetic imidazoles or triazoles
 - Imidazoles: ketoconazole, miconazole, clotrimazole
 - Triazoles: itraconazole, fluconazole, voriconazole
 - **Mechanism of action**
 - Inhibits fungal cytochrome P450 enzymes, reducing ergosterol
 - Imidazoles are less specific than triazoles and exhibit more drug interactions and side effects
 - **Activity**
 - Broad range including candida species, C. neoformans, endemic mycosis, dermatophytes, aspergillus, and amphotericin-resistant fungi
Azoles

1) Itraconazole
 - General characteristics
 - Oral and intravenous
 - Poor penetration into CSF
 - Treatment for
 - dimorphic fungi
 - Dermatophytosis
 - onychomycosis

2) Fluconazole
 - General
 - Water soluble, good CSF penetration
 - High oral bioavailability, also as IV
 - Few liver enzyme interactions
 - Treatment for:
 - Cryptococcal meningitis
 - Candidemia
 - Prophylaxis for bm transplant recipients and AIDS patients

3) Voriconazole
 - General characteristics
 - Newest triazole
 - IV and oral
 - Visual disturbances reported including color blindness, light sensitivity, blurred vision
 - Treatment for:
 - Candida species
 - Dimorphic fungi
 - Invasive aspergillosis
Systemic antifungal drugs

- Echinocandins: eg, **Caspofungin**

General characteristics
- Newest class to be developed
- Large cyclic peptides linked to long fatty acid

Mechanism of Action
- Inhibits synthesis of β(1-3)glucan disrupting cell wall

Activity
- Salvage therapy for patients with invasive aspergillosis unresponsive to Amphotericin B
- Mucocutaneous candidiasis and bloodstream infections

Adverse effects
- Well-tolerated
- Do not prescribe with cyclosporine = elevated liver enzymes
Systemic antifungals: mucocutaneous infections

- Griseofulvin
 - General characteristics
 - Source: species of penicillium
 - Insoluble
 - Microcrystalline form
 - Mechanisms of action
 - Protects new skin from infection by binding to keratin
 - Activity
 - Dermatophytosis
 - Must be applied for weeks to months, especially for nail infections
Topical antifungals

- **Nystatin**
 - General characteristics
 - Polyene macrolide
 - Topical use only due to extreme toxicity
 - Poorly absorbed
 - Activity
 - Candida species such as oropharyngeal thrush, vaginal candidiasis

- **Topical Azoles**
 - Clotrimazole and miconazole
 - OTC
 - Vulvovaginal candidiasis, thrush, dermatophytes, tinea corporis, pedis, cruris
 - Shampoo forms for seborrheic dermatitis and pityriasis versicolor
Antiviral drugs

- Nucleoside and nucleotide analogs
- Other enzyme inhibitors
- Interferons
Antiviral drugs

- Nucleoside (sugar + base) and nucleotide analogs
 - Acyclovir
 - Genital herpes
 - Derivatives
 - Famciclovir, ganciclovir
 - Trifluvidine
 - Herpes keratitis
 - Contains thymine
 - Ribavirin
 - Interferes with viral replication
 - Resembles guanine
 - Zidovudine (AZT)
 - Blocks synthesis of DNA from RNA by RTase
Antiviral drugs

- Other enzyme inhibitors
 - Inhibit enzymes in last stage of viral replication
 - Protease inhibitors
 - Examples: Indinavir, saquinavir
 - Tamiflu
 - Inhibits neuraminidase
 - Effective against influenza

- Interferons
 - Alpha interferon for viral hepatitis infections
On the horizon….LJ001

- Broad spectrum antiviral
- Small amphipathic molecule (for the chemists….aryl methylene rhodanine derivative😊)
- Prevents virus to cell fusion of enveloped viruses; does not interfere with cell to cell fusion
- Efficacy demonstrated against all enveloped viruses, including Ebola and HIV!
 - Why? Cells can repair damage to plasma membrane; virions cannot!

Antiprotzoans

- Quinine
- Artemisinin
- Metronidazole
Antiprotozoal drugs (antimalarialis)

- **Quinine**
 - Chloroquine (*synthetic*)
 - Mefloquine
 - Effective against resistant strains

- **Artemisinin** (*1st line drugs in endemic countries*)
 - Artesunate
 - Sometimes with mefloquine in drug resistant areas
 - Dihydroartemisinin
Antiprotozoal drugs: artemisinin

- Derived from Chinese herb qing-hao 青蒿素 (Artemisia annua)
- drug = Qinghaosu
 - Used over 2000 years in Chinese traditional medicine as antipyretic
 - As antimalarials, effective only against the blood schizonts, not hepatic forms
 - Better tolerated than other antimalarials
 - Not available in US
Antiprotozoan drugs: artemisinin

- Limited bioavailability in natural form
- Semisynthetic analogs improve solubility and antimalarial efficacy
 - Artesunate
 - Water soluble
 - Oral, IM, IV, rectal
 - Artemether
 - Lipid soluble
 - Oral, IM, rectal
AntipROTOZOAL drugs: artemisinin

• Mechanism of action
 ◦ *Plasmodium spp* infect red blood cells
 ◦ Cause chemical reactions that release heme from hemoglobin
 ◦ Heme reacts with a peroxide bond in artemisinin producing reactive oxygen radicals that damage *Plasmodium*
 ◦ Usually prescribed in combination with lumefantrine (benflumetol) because artemisinin alone is only active for one to two hours in vitro
 • Combination drug is called Coartem (Novartis)
Antiprotozoal drugs

- Metronidazole (Flagyl)
 - Parasitic protozoa & obligate anaerobes
 - Interferes with anaerobic metabolism
 - Effective against giardiasis, amoebic dysentery, clostridia
Anti-helminthic drugs

- Niclosamide
- Praziquantel
- Mebendazole
- Ivermectin
- Moxidectin

Ancylostoma duodenale
Antihelminthic drugs

- Tapeworms
 - Niclosamide
 - Inhibits ATP production
 - Praziquantel
 - Effects plasma membrane permeability
 - Also effective against fluke

- Mebendazole
 - Ascaris, pinworms, whipworms
 - Effects motility by altering microtubules

- Ivermectin
 - Paralyzes nematodes
Anti-helminthic drugs

- **Moxidectin**
 - Experimental treatment for Onchocerciasis (River Blindness)
 - Eradication efforts by WHO in 1970 only partially successful
 - Used insecticides to kill vector
 - Kills larvae and kills or sterilizes adult worms
 - In Clinical trials in Ghana, Liberia, and Congo until 2012
 - Currently Rx in dogs/cats, cattle for parasite infections
 - Prod by Bayer Animal Health
 - If successful, will be produced for humans by Wyeth
 - Current treatment = ivermectin

Source: Laura McInnis, Reuters Health, 7/1/09
Susceptibility tests

- **Kirby-Bauer test**
 - Zone of inhibition
 - Sensitive, intermediate, resistant

- **E-test**
 - MIC = lowest concentration that inhibits microbial growth
 - Antibiotic gradient

- **Broth dilution**
 - MIC & MBC (minimum bactericidal concentration=how much does it take to KILL the organism)
 - Uses microtiter plates and various dilutions to determine if agent is inhibitory or bactericidal
Susceptibility tests
Drug resistance
Mechanisms of antibiotic resistance

- Plasmids
- Chromosomal
- Examples
 - β-lactamases
 - Efflux pumps

Why?
- Selective pressure
- Widespread use
 - Unregulated in some countries
- Non-adherence
- Addition to animal feed
- Short generation time
Antibiotics in animal feed

Purpose
- Reduce bacterial infections
- Enhance growth
 - Reduction of enterics

Concern: selective pressure
- Transfer of resistant strains to humans
 - Salmonella in meat or milk
 - Traced back to farms
Antibiotics and animal feed

- **VRE**
 - Use of vancomycin and avoparcin in animal feed in Europe
 - Importation of bacteria in travelers and imported food
 - Increased used of antimicrobials in hospitals
 - Reduction of VRE-positive samples in Germany by 75% when banned in animal feed

- **Microbial alternatives**
 - Prevent colonization
 - Reduce fecal contamination during processing in slaughterhouses
 - Proper storage and cooking of food
Resistance and TB; example

- Five first-line antimycobacterial drugs
 - Rifampin, INH, pyrazinamide, ethambutol, streptomycin
- Usually use 3 drugs together…why?

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Duration of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH, rifampin, pyrazinamide</td>
<td>6 months</td>
</tr>
<tr>
<td>INH, rifampin</td>
<td>9 months</td>
</tr>
<tr>
<td>Rifampin, ethambutol, pyrazinamide</td>
<td>6 months</td>
</tr>
<tr>
<td>Rifamin, ethambutol</td>
<td>12 months</td>
</tr>
<tr>
<td>INH, ethambutol</td>
<td>18 months</td>
</tr>
</tbody>
</table>
Drugs and TB

- **Modes of action**
 - INH inhibits mycolic acid synthesis
 - Rifampin inhibits mRNA synthesis
 - Ethambutol interferes with cell wall synthesis
 - Pyrazinamide effective against intracellular tubercle bacteria by unknown mechanism
 - Streptomycin interferes with protein synthesis (often used as 2nd line drug in TB management)
Drugs and TB

- Drugs used in combination due to resistance and ability to decrease duration of treatment.
- Most effective drugs: Rifampin and INH
- 1 bacillus/10^6 is naturally resistant
 - TB lesions can have 10^8 organisms, so some will be resistant
 - Ex) If INH is only drug, some resistant organisms will survive and propagate
Drugs and TB

- With MDRTB and XDRTB, 1st line drugs will not work….must move to 2nd line drugs (less effective), and longer duration of treatment

- Second-line drugs include:
 - Amikacin, aminosalicylic acid, capreomycin, clofazimine, clysosercine, ethionamide, levofloxacine, rifabutin, rifapentine
Artemisinin resistance

• Reports of resistance emerging from Thai/Cambodia border
 ◦ Same location as first reports of antimalarial drug resistance 50 years ago

• Driven by
 ◦ Production and distribution of counterfeit drugs
 ◦ Substandard drug preparation methods
 ◦ artemisinin monotherapy
 ◦ Sale of artemisinin in single doses (requires 6 doses over 60 hours to be effective)
 ◦ Lack of prescription control

NEJM, 2009; 361: 455-67
Future directions

- **Increase new drug development**
 - Extend spectrum of existing drugs
 - Antisense and triplex technology
 - Prevent production of pathogenic protein
 - Antimicrobial peptides
 - Used by animals as defense against microbes

- **Improve drug distribution and production control**
 - Prescription controls in deregulated countries
 - Production controls to ensure that only legitimate, fully effective drugs are distributed
 - Video
 http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/ucm134359.htm