Prokaryotic vs. Eukaryotic Cells

By
Dr. Carmen Rexach
Mt San Antonio College
Microbiology
Eukaryotes = true nucleus

- DNA in linear arrangement = chromosomes
- DNA associated with histone & nonhistone proteins
- DNA in nucleus surrounded by nuclear envelope
- Specialized mitotic apparatus involved in nuclear division
- Contain organelles
- Size: >10 \(\mu m \)
Prokaryotes = prenucleus

- DNA not enclosed in a membrane
- DNA not associated with histone proteins
- Usually single, circular DNA molecule
- No membrane bound organelles
- Cell walls almost always contain peptidoglycan
- Divide by binary fission
- Size: \(<5\mu m\)
Prokaryotic cells
Size and Shape

- **Kingdoms Bacteria and Archaea**
- **Size**
 - Diameter = 0.2-2µm, Length = 2-8µm
- **Shape**: representative with many variations
 - Coccus
 - Bacillus
 - Spiral
 - Vibrio=comma
 - Spirillum=corkscrew
 - Spirochete=helical/flexible
 - Other
 - Square flat, triangular, appendaged and filamentous
Shapes
Unusual shapes

(a) Star-shaped bacteria

(b) Rectangular bacteria
Arrangements

- Diplo-
- Strepto-
- Staphylo-
- Tetrads-
- Sarcinae-

- Monomorphc=retain single shape
- Pleomorphc=many shapes

(Corynebacterium)
Arrangement
Structures external to cell wall

• Glycocalyx
• Flagella
• Axial filaments
• Fimbriae and pili
Glycocalyx

- **Capsule** (organized, firmly attached) or **slime layer** (unorganized, loosely attached) surrounding cell
- Sticky polymer exported outside of cell wall composed of polysaccharides, polypeptides or both
- **Functions:**
 - Protection against phagocytosis (virulence factor)
 - Attachment to surfaces
 - Nutritional source
 - Protect against dessication
 - Prevents loss of nutrients away from cell (viscosity)
Glycocalyx
Flagella (whip)

- Long filamentous appendage, 20nm in diameter, for locomotion
- Arrangements

<table>
<thead>
<tr>
<th>Structure</th>
<th>Flagella Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monotrichous</td>
<td>Vibrio cholerae</td>
</tr>
<tr>
<td></td>
<td>Lophotrichous</td>
<td>Bartonella bacilliformis</td>
</tr>
<tr>
<td></td>
<td>Amphitrichous</td>
<td>Spinillum serpens</td>
</tr>
<tr>
<td></td>
<td>Peritrichous</td>
<td>Escherichia coli</td>
</tr>
</tbody>
</table>
Flagella
Flagella: structure

• Three parts
 - Filament = composed of flagellin
 - Hook=attached to filament
 - Basal body=anchors to cell membrane
 • Differences in structure of gram negative/gram positive
• Grows at tip
• Movement: clockwise or counterclockwise rotation initiated by basal body
 - Run and tumble
• Chemotaxis
 - movement towards a certain stimulus
• H Antigens
Structure of Flagella

(a) Parts and attachment of a flagellum of a gram-negative bacterium
Motile cells: flagella

(a) A bacterium running and tumbling. Notice that the direction of flagellar rotation determines which of these movements occurs.

(b) A *Proteus* cell in the swarming stage may have more than 1000 peritrichous flagella.
Axial filaments

- Spirochetes
- Filament arises at ends and wraps around cell under sheath
- Causes corkscrew like movement
- Endoflagella
- Ex: *T. pallidum, B. burgdorferi*
Axial filament structure
Axial filament
Fimbriae and pili

• Hairlike appendages on gram negative bacteria made of pilin

• Fimbriae
 - polar or evenly distributed
 - Cellular adhesion to surfaces

• Pili
 - Longer, one or two per cell
 - Attachment
 - Conjugation = sex pili

E. coli: EM showing pili
Cell wall

• External to cell membrane, semi rigid
• Functions
 - Protects cell from osmotic pressure changes (lysis)
 - Maintains shape
 - Anchor point for flagella
 - Involved in pathogenesis in some diseases
 - Site of most antibiotic action
 • Prevent formation
 • Disrupt existing use
Peptidoglycan

- Polymer composed of repeating disaccharides attached by short chains of amino acids
- Disaccharides
 - N-acetylgucosamine (NAG) = similar to glucose
 - N-acetylmuramic acid (NAM)

(a) Structure of peptidoglycan in gram-positive bacteria
Gram positive cell wall
(thick/rigid)

• Ex) *Streptococcus spp.*
• Layers of peptidoglycan (90% of cell wall) + teichoic acid
• Teichoic acid
 - Lipoteichoic acid + wall teichoic acids
 - Negatively charged because of PO_4^-
 - Function
 • Effects movement of positive charged ions into/out of cell
 • Involved in cell growth by maintaining cell wall integrity
 • Primary contributor to antigenic specificity
Gram positive cell wall structure
Gram positive cell wall

N-acetylglucosamine (NAG)
N-acetylmuramic acid (NAM)
Side-chain amino acid
Cross-bridge amino acid

(b) Gram-positive cell wall
Gram negative cell wall

- Outer membrane composed of lipoprotein-lipopolysaccharide-phospholipid surrounding thin layer of peptidoglycan (like “peanut butter” in a lipid sandwich) in periplasmic space
- No teichoic acid = increased fragility
Gram negative cell wall structure
Gram negative cell wall

N-acetylglucosamine (NAG)
N-acetylmuramic acid (NAM)

- Side-chain amino acid
- Cross-bridge amino acid

Lipopolysaccharide

(c) Gram-negative cell wall
Gram negative cell wall:
Functions of outer membrane

- Evades phagocytosis & action of complement due to negative charge
- Barrier to some antibiotics (penicillin)
- Barrier to digestive enzymes, detergents, heavy metals, bile salts, dyes
- Prevents things from diffusing away once internalized
- Contains porins = membrane proteins allow for passage of nucleotides, disaccharides, peptides, amino acids, Fe, vitamin B12
- Attachment site for some viruses
- O-polysaccharide of outer membrane = antigenic
- Lipid A of lipopolysaccharide is endotoxin (GI/blood stream)
Atypical cell wall

• **Mycoplasma**
 - Smallest known extracellular bacteria
 - No cell wall
 - Sterols in plasma membrane protect against lysis

• **Archaea**
 - Some have no cell wall
 - Others have walls of pseudomurein (lack NAM and D amino acids)
Mycobacterial cell wall

- Thick outer coating of mycolic acid (hydroxy lipid) complexed to peptidoglycan of cell wall
Damage to cell wall

- Protoplast is a wall-less gram-positive cell
 - Ex) Exposure of gram + cell to lysozyme
 - Ex) Gram + cell exposed to penicillin
- Spheroplast is a wall-less gram-negative cell.
 - Ex) Exposure of gram- cell to lysozyme
- L forms are wall-less cells that swell into irregular shapes.
- Damaged cell walls subject to osmolysis
Structures internal to the cell wall

- Plasma membrane
- Nucleoid
- Ribosomes
- Inclusions
- Endospores
Plasma membrane

- Thickness: approx 8nm
- Function
 - Selective barrier: concentration of substances inside cell and excretion of wastes
- Composition
 - Phospholipid bilayer with embedded protein (no sterols)
 - Phospholipids separate internal from external environment = amphipathic
 - Proteins: integral and peripheral
 - Some special structures
 - Thylakoids = photosynthesis
 - Chromatophores = pigment
Fluid mosaic

- Viscosity dependent on type of phospholipids (saturated/unsaturated)
- Phospholipids move laterally
- Proteins moved, removed, inserted
Movement of materials across membrane

- Passive transport
 - Simple diffusion
 - Facilitated diffusion
 - osmosis
- Active transport
Passive transport: no energy required

• Simple diffusion
 - Movement of molecules from high concentration to low concentration (with the concentration gradient) by random molecular motion toward equilibrium

• Facilitated diffusion
 - Movement with concentration gradient but requires transporter protein

• Osmosis
 - Movement of water across a selectively permeable barrier with the concentration gradient
Passive transport

(a) At beginning of osmotic pressure experiment

(b)

osmosis
(c) **Isotonic solution**—no net movement of water

(d) **Hypotonic solution**—water moves into the cell and may cause the cell to burst if the wall is weak or damaged (osmotic lysis)

(e) **Hypertonic solution**—water moves out of the cell, causing its cytoplasm to shrink (plasmolysis)
Active transport: Energy required

- Movement against the concentration gradient
- Requires ATP (energy) and a specific transporter protein for each substance
- Group translocation
 - Occurs only in prokaryotes
 - Substance being transported is altered during transport (often phosphorylation)
 - Membrane is impermeable to the new product
Nucleoid

• Region in bacteria where single circular dsDNA chromosome is located and attached to cell membrane

• Plasmids
 - Extrachromosomal genetic elements
 - 5-100 genes
 - Confer properties such as antibiotic resistance
 - Can be transferred from one bacterium to another
 - Manipulated in biotechnology
Nucleiod
Ribosomes

- Sites of protein synthesis
- Found in both prokaryotic and eukaryotic cells
- Structure
 - 2 subunits (70S)
 - Each composed of protein and ribosomal RNA
 - Smaller and denser than in eukaryotic cells
 - Protein synthesis is inhibited by streptomycin, neomycine, and tetracyclines
Prokaryotic vs. Eukaryotic ribosomes

Prokaryotic
- rRNA: 23S (2900 bases), 5S (120 bases)
- Proteins: L1, L2, L3 (Total: 31)
- Subunits: 5S, 23S, 50S
- Assembled ribosomes: 70S

Eukaryotic (mammalian)
- rRNA: 28S (4800 bases), 5.8S (160 bases), 5S (120 bases)
- Proteins: L1, L2, L3 (Total: 50)
- Subunits: 5.8S, 5S, 28S, 60S
- Assembled ribosomes: 80S
Inclusions

• Reserve deposits found in both prokaryotic and eukaryotic cells

• Many different types, some specific
 - Metachromatic granules composed of volutin provide reserve for inorganic phosphate diagnostic for *Corynebacterium diptheriae*
 - Polysaccharide granules, lipid inclusions, sulfur granules, carboxysomes (enzymes for carbon fixation), gas vacuoles (buoyancy in aquatic forms)
Inclusions

Magnetosomes

TEM 1 μm
Endospores

- **Gram positive bacteria, especially** *Clostridium* and *Bacillus*
 - Exception= *Coxiella burnetti* (gram negative)
- **Resistance**
 - Severe heat, desiccation, toxic chemicals, radiation
- **Process**
 - Sporulation or sporogenesis
- **Location**
 - Terminal, subterminal, central
- **Germination**
 - Return to vegetative state
Light Microscope Image of Endospores
(b) An endospore in *Bacillus anthracis*
Eukaryotic cells
Eukaryotic cells

- Eukaryotic microbes include fungi, protozoa, algae, animals
- Size: 10-100μm
- Contain membrane-bound organelles
- Membrane-bound chromosomes associated with histones and other proteins
Flagella and cilia

- Flagella: few and long
- Cilia: short and numerous
- Both involved in movement
- Cilia may also move things across the surface of a cell
- Different structure than in prokaryotes
 - Composed of nine pairs of microtubules surrounding two singles
 - Thicker
 - Moves in a wavelike or undulating motion
Flagella and cilia

(a) TEM 25 μm (b) SEM 20 μm
Cell wall and glycocalyx

• Not all cells have cell wall
• Simpler cell wall construction than in prokaryotes
• Cellulose
 - Most algae, plants, some fungi (chitin)
• Polysaccharides glucan and mannan
 - yeast
• Pellicle (not cell wall, atypical covering)
 - protozoans
• Glycocalyx
 - Sugar coating
 - Increases cell strength, involved in attachment, cell to cell recognition
Cell Walls
Plasma membrane

• External covering in cell when cell wall absent
• Composition
 - Phospholipid bilayer with associated proteins, sterols, and carbohydrates attached to proteins
• Same transport mechanisms as prokaryotic cells
• Additional transport mechanisms in cells without cell wall
 - Endocytosis (pinocytosis/phagocytosis)
Cytoplasm

• Prokaryotic cells have homogenous cytoplasm, otherwise similar
 - Many enzymes found in prokaryotic cytoplasm are isolated in organelles
• Describes region between nuclear envelope and plasma membrane
• Cytoskeleton
 - Microfilaments, intermediate filaments, microtubules
 - Cytoplasmic streaming = movement of cytoplasm from one part of cell to another
Cytoskeleton

Intermediate filaments

Microfilaments with fluorescent label
Organelles

- Specialized structures in eukaryotic cells
- Most membrane bound
 - Nucleus
 - Endoplasmic reticulum
 - Ribosomes (80S)
 - Golgi
 - Mitochondria
 - Chloroplasts
 - Lysosomes
 - Vacuoles
 - Centrioles
Nucleus

- Genetic material
- Nuclear envelope
- Nuclear pores—endoplasmic reticulum
- Nucleoli
- DNA
 - Histones and nonhistones
 - Chromatin vs. chromosomes
- Division
 - Mitosis/meiosis
Endoplasmic reticulum (ER)

- Series of fluid filled channels connecting nuclear pores with the plasma membrane
- Two general types
 - Rough
 - Dotted with ribosomes
 - Protein synthesis for export
 - Smooth
 - Synthesis and storage of lipids and Ca$^{+2}$
Ribosomes (80S)

- On ER or free in cytoplasm
- Sites of protein synthesis
- 2 subunits, larger and denser than prokaryotes
- Mitochondria and chloroplasts have own DNA and ribosomes (70S) like prokaryotes
Golgi Apparatus

- Stack of flattened sacks located in cytoplasm
- Packages substances synthesized in ER and sort by destination
- Important site of modification of substances
- Altered products leave via secretory vesicles
• **Powerhouse**
 - Respiration and oxidative phosphorylation
 - Where cellular energy is produced

• **Structure**
 - Double membrane
 - Cristae, matrix
 - Capable of independent division
 - Contains own DNA and 70S ribosomes
Chloroplasts

• Found in green algae and plants
• Pigments and enzymes for photosynthesis
• Structure
 - Double membrane
 - Thylakoids and grana
 - Stroma
 - Capable of independent division
 • Contains own DNA and 70S ribosomes
Lysosomes and vacuoles

- **Lysosomes**
 - Digestive enzymes enclosed in single membrane
 - Responsible for decomposition of phagocytosed products
 - Autophagy

- **Vacuoles**
 - Space or cavity in cytoplasm enclosed by tonoplast = membrane
 - Storage for poisons, metabolic wastes, pigments, water
 - Can act as lysosome
 - In plants = turgor pressure
Lysosomes & vacuoles

(b) Transmission electron micrographs of plant and animal cells

Animal cell, an antibody-secreting plasma cell
Centrioles

• Bundles of microtubules stored at 90° angles to each other in cytoplasm near nucleus
• Involved in cell division in animal cells
• Arise from microtubule organizing center
 – Flagella and cilia
centrioles

vacuoles
Evolution of eukaryotic cells

• Autogenous hypothesis
 - Organelles developed from cellular involusions of the plasma membrane
 - Endomembrane system
 - Endoplasmic reticulum, golgi, nuclear envelope
Evolution of eukaryotic cells

- Endosymbiotic hypothesis of Margulis
 - Organelles arose as result of symbiosis between larger and smaller prokaryotic cells
 - One prokaryote would engulf another
 - Mitochondria = descended from association between heterotrophic aerobic prokaryotes
 - Chloroplasts = descended from association of photosynthetic (autotrophic) prokaryotes
Endosymbiotic theory

Diagram showing the evolution from Universal ancestor to Eukarya, including the incorporation of Bacteria, Archaea, Chloroplast, and Mitochondrion.