Understanding EKG

Dr. Carmen E. Rexach
Physiology
Mt SAC
What is an EKG?

- Recording of the electrical activity of the heart
- **Remember:** myocardial cells are sensitive and polarized at rest
 - Negative inside, positive outside
- Cells can depolarize, repolarize and hyperpolarize
Major components

• Pacemaker cells
 – Specialized cells that depolarize first to keep the cells of the heart “together”

• Conduction system
 – Connect various parts of the heart so that the signal spreads ... like wires

• Myocardial cells
 – Regular cardiac muscle cells
 – Ectopic pacemaker
 – RMP = -90mV for most cells
Electrical activity of heart

- Components of conduction system
 - sinoatrial node
 - atrioventricular node
 - bundle of His
 - R/L bundle branches
 - Purkinje fibers
EKG

• Measures electrical activity of myocardial cells
 – Duration
 • fractions of a second
 – Amplitude
 • mV
 – Configuration
 • shape and appearance of wave
Waves

- Three distinct waves
 - $P =$ atrial depolarization
 - $QRS =$ depolarization of ventricles + repolarization of the atria
 - $T =$ repolarization of ventricles
Intervals and segments

- **Intervals**
 - Wave + connecting straight line

- **Segments**
 - Straight line between two waves
Intervals and segments

- **PR interval**
 - P wave and straight line connecting it with QRS complex
 - Measure amount of time from beginning of atrial depolarization to beginning of ventricular depolarization
Intervals and segments

- **ST segment**
 - Straight line connecting the end of QRS complex and start of T-wave
 - End of ventricular depolarization to beginning of ventricular repolarization
Intervals and segments

- **QT interval**
 - QRS complex + ST segment + T wave
 - Beginning of ventricular depolarization to end of ventricular repolarization
Reading an EKG

• Horizontal axis measures time
 – One small square (1x1mm) = 0.04 seconds
 – One big square (5x5mm) = 0.2 seconds

• Vertical axis measures voltage
 – One small square = 0.1mV
 – One big square = 0.5mV
Placing EKG leads

- **Bipolar leads:**
 - Record voltage between electrodes placed on wrists and legs.
 - Right leg is ground.

- **Unipolar leads:**
 - Voltage is recorded between a single “exploratory electrode” placed on body and an electrode built into the electrocardiograph.
 - Placed on right arm, left arm, left leg, and chest.
 - Allow to view the changing pattern of electrical activity from different perspectives.
Placing EKG leads

- 3-D view of the heart = 12 leads
Placing EKG leads

• Lead II most common monitoring lead
Mean Electrical Axis

- **Average vector of all instantaneous vectors = mean vector**
- **Direction of the mean vector = mean electrical axis**
 - Mean QRS vector usually between +90° and -30°
 - Think of series of vectors in ventricle beginning with septal depolarization, then gradually moving through left ventricle (which will dominate!)
Ventricular vectors

Deflection from isoelectric line; A = slight neg, B=pos, C=pos, D=slight neg
Movement of electrical current
Mean Electrical Axis equal to the sum of all mean electrical vectors
To determine mean electrical axis

• Axis that is perpendicular to lead axis with the smallest net amplitude (positive-negative deflection voltages)
• In preceding slides, this is lead III.
• Therefore, mean electrical axis would be perpendicular to lead III.
 – Lead III has deflection of 120°
 – Perpendicular to that would be -90°
 – Therefore, MEA = +30°
Right and Left Axis Deviation

- **Ventricular hypertrophy**
 - **Left ventricular hypertrophy**
 - Untreated hypertension over many years can cause enlargement of the left ventricle
 - Electrical dominance of left over the right becomes more pronounced = **left axis deviation**
 - **Right ventricular hypertrophy** less common
 - Requires huge change to compensate for dominant left
 - Causes: Severe pulmonary stenosis or primary pulmonary hypertension
 - Right side significantly hypertrophies so that QRS axis shifts to right = **right axis deviation**
Standard Limb & Precordial Leads

Einthoven's triangle (frontal plane)

Left-sided axis deviation

Right-sided axis deviation

Precordial leads: \(V_1 \) - \(V_6 \) (Horizontal plane)
Left axis deviation

Dx: hypertrophic cardiomyopathy with asymmetrical thickening of interventricular septum
Right axis deviation

Dx: repeated pulmonary emboli
EKG

Normal EKG

Atrial fibrillation
Note: irregular, undulating baseline

Atrial flutter
Note: saw-toothed appearance

Second degree AV block
Note: progressive prolongation of P-R interval until a QRS is dropped