Regulation of Metabolism

By
Dr. Carmen Rexach
Physiology
Mt San Antonio College
Energy

• Constant need in living cells
• Measured in kcal
 – carbohydrates and proteins = 4kcal/g
 – Fats = 9kcal/g
• Most diets are mixed
Metabolic rate

• **Measure MR**
 - Direct = heat
 - Indirect = oxygen consumption

• **Temperature**
 - Influences chemical reactions
 - results in physiological response to change

• **Physical activity** = primary determinant of energy requirements
 - wt loss
 - wt gain
Basal metabolic rate

• Conditions
 - 12 to 14 hours after eating
 - comfortable temperature
 - awake, but resting

• determinants
 - age, sex, surface area, thyroid hormones, genetic components
Anabolic requirements

- **Turnover rate** = rate at which molecule is broken down and resynthesized

<table>
<thead>
<tr>
<th>nutrient</th>
<th>turnover</th>
<th>requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>250g/day</td>
<td>150g/day</td>
</tr>
<tr>
<td>proteins</td>
<td>150g/day</td>
<td>35g/day</td>
</tr>
<tr>
<td>fats</td>
<td>100g/day</td>
<td>negligible</td>
</tr>
</tbody>
</table>

- **Requirements**
 - essential amino acids for proteins and essential fatty acids for fats
 - Water soluble and fat soluble vitamins
 - Minerals and trace elements
Regulation of energy metabolism

• **Two sources**
 - absorbed nutrients
 - energy reserves

• **Preferred energy sources**
 - depends on available enzymes
 - brain = blood glucose; skeletal muscle = fatty acid

• **Eating**
 - Body fat and endocrine function
 - large habit component
 - Partially controlled by hypothalamus
 - Influenced by neurotransmitters, endorphins, intestinal hormones

• **Hormonal regulation of metabolism**
 - absorptive state
 - postabsorptive state
Energy regulation by islets of Langerhans

- Three cell types produce polypeptide hormones
 - **Beta** (β) cells = insulin
 - Encourages cellular glucose uptake
 - In liver, activates glycogen synthetase
 - Encourages lipid synthesis
 - Stimulates the movement of amino acids into cells
 - **Alpha** (α) cells = glucagon
 - Encourages liberation of reserves
 - Prevents glucose uptake by liver, muscle, adipose
 - **Delta** (δ) cells = somatostatin
 - Not sure
Pancreatic islets = islets of Langerhans
Regulation of insulin and glucagon secretion

- **Effects of glucose and amino acids**
 - **rise in plasma glucose**
 - stimulation of β cells
 - inhibits α cells
 - **fall in plasma glucose**
 - decreased insulin
 - increased glucagon
 - **meals high in protein**
 - stimulates insulin
 - **meals high in protein and low in carbohydrate**
 - stimulates glucagon
 - result: increase in blood glucose and increased incorporation of amino acids into tissues
Regulation of insulin and glucagon secretion

- **Effects of autonomic nerves and GIP**
 - **parasympathetic**
 - increased insulin
 - **sympathetic**
 - increased glucagon, inhibits insulin
 - stress hyperglycemia = glucagon + epinephrine
 - **GIP**: stimulates release of insulin before it appears in blood (presence of glucose in intestines)
 - **Goal**: Keep blood glucose between 50mg/100ml and 170mg/100ml
 - higher = glycosilation; lower = brain damage
Absorptive state

• High insulin and low glucagon
• Insulin
 - cellular uptake of glucose
 - uptake & incorporation of amino acids
 - conversion of glucose to glycogen
 - additional glucose to fat
 - incorporation of glucose into adipose tissue
 - suppression of liver glycogen hydrolysis
Postabsorptive state

- Low insulin, high glucagon
 - low insulin encourages movement of amino acids out of the muscles
- cortisol -- stimulates production of enzymes to convert pyruvic acid to glucose
- glucagon
 - stimulates glycogenolysis
 - stimulates gluconeogenesis
 - stimulates lipolysis
 - stimulates ketogenesis
Diabetes mellitus

- **IDDM**: insulin deficiency
 - autoimmune, ketosis (can lead to ketoacidosis)
 - increased blood glucagon secretions
 - 3 p’s = polydypsia, polyuria, polyphagia
- **NIDDM**: insulin resistance and deficiency
 - slow to develop
 - hereditary component
 - overweight
 - usually no ketoacidosis, but serious sequelae
Hyper and hypoglycemia

- **Hyperglycemia** = chronic high blood glucose
 - insufficient secretion of insulin from \(\beta \) cells
 - inability of insulin to stimulate glucose uptake
- **Hypoglycemia**
 - overdose of insulin
 - reactive hypoglycemia = excessive increase in insulin after carbo meal
 - symptoms: tremor, hunger, weakness, blurred vision, impaired mental ability
Metabolic regulation by adrenal hormones

- **Metabolic effects of epinephrine**
 - similar to glucagon
 - conditions for secretion
 - fight or flight
 - low blood glucose
 - fasting

- **Metabolic effects of glucocorticoids**
 - prolonged fasting or exercise = stress
 - Effects
 - lipolysis & ketogenesis, stimulates hepatic enzyme synthesis for gluconeogenesis, promotes release of amino acids from muscle
Metabolic regulation by thyroxin

• **Function**
 - cellular respiration, growth & development in early childhood

• **Cellular respiration**
 - calorigenic effect = increases BMR
 - sets BMR

• **Growth and development**
 - RNA and protein synthesis
 - cretinism

• Hypothyroidism and hyperthyroidism
Metabolic regulation by growth hormone

- Regulation of secretion
 - GHRH
 - increase aa in plasma
 - decrease glucose in plasma

- insulin-like growth factors
 - Mediates action of growth hormone

- Effects on metabolism
 - protein synthesis
 - catabolism

- Effects on body growth
 - hypersecretion & hyposecretion in children and adults
Regulation of calcium and phosphate balance

- PTH, active vitamin D, calcitonin
- bone remodeling
- plasma concentration
- role of Ca^{++} in body
 - bone formation
 - muscle contraction
 - second messenger
 - membrane permeability
Parathyroid hormone

• **Stimulus:** decrease in plasma Ca^{++}
• **Action:**
 - stimulates osteoclasts
 - stimulates Ca^{++} reabsorption by kidneys
 - inhibits reabsorption of PO_4^{-3}
 - promotes formation of active vitamin D3
1,25-dihydroxyvitamin D3

- **Action:** raises plasma Ca\(^{++}\)/PO\(_4\)^{-3} by:
 - intestinal absorption
 - resorption
 - renal reabsorption
- **Absence/inadequate secretion**
Calcitonin

- Calcium lowering hormone
- Stimulus
- Action:
 - inhibition of osteoclasts
 - inhibition of reabsorption of Ca^{++} and PO_4^{-3} in the kidneys